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Abstract 
In previous studies, it was shown that the discontinuous particle method performs well in 

computational hydrodynamics problems with strong gradients, exemplified by the formation 
of an oblique stress jump. This article explores the application of the discontinuous particle 
method to problems involving viscosity. The investigation includes a one-dimensional Burg-
ers' equation with an initial condition in the form of a smoothed wave and a two-dimensional 
Blasius problem. Numerical experiments showed agreement between the obtained solution 
and the analytical one. However, in the two-dimensional case, the algorithm's performance 
significantly decreases due to the need to determine particle neighbors. It is concluded that 
the discontinuous particle method can handle viscosity problems in one dimension, but 
modifications to the existing algorithm are required for higher-dimensional cases. The study 
of applying the discontinuous particle method to viscous problems was conducted as part of a 
comprehensive research effort comparing the relative accuracy of numerical methods on 
benchmark solutions.  

Keywords: Discontinuous particle method, Burgers’ equation, computational gas dy-
namics, Blasius boundary layer.  

 

1. Introduction 
In recent years, particle methods have become a valuable tool for numerically solving 

partial differential equations and have been successfully applied to a wide range of problems 
in astrophysics, plasma physics, solid-state physics, medical physics, and hydrodynamics [1 –
4]. In these methods, the solution is sought as a linear combination of δ-functions, where the 
positions and coefficients represent the locations and weights of particles, respectively. The 
solution is then obtained by tracking the temporal evolution of particle positions and weights 
according to the system of ordinary differential equations derived from considering the weak 
formulation of the problem. To recover pointwise values of the computed solution at some 
time t > 0, regularization of the particle solution is necessary. Therefore, the efficiency of the 
particle method depends on the quality of regularization procedures, allowing the reconstruc-
tion of an approximate solution based on the particle distribution. Typically, regularization of 
the particle solution involves convolution with a so-called smoothing function, which serves 
as a smooth approximation of the δ-function and, after appropriate scaling, accounts for the 
tightness of particle discretization. 

Particle methods offer numerous advantages over finite-difference methods. The numeri-
cal viscosity introduced by the discretization of convective terms in most finite-difference 
methods can significantly degrade the accuracy of the computational method, especially when 
a coarse grid is used. Lagrangian-type methods, on the other hand, can alleviate many  issues 
associated with numerical viscosity since particles provide a non-dissipative approximation of 
convection. Additionally, in scientific applications like kinetic theory, finite-difference meth-
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ods may be impractical for realistic scenarios due to problem dimensionality [5]. In contrast, 
particle schemes concentrate particles in the relevant phase space region, optimizing com-
puter memory usage. Being meshless, particle methods are highly flexible and advantageous 
for problems with complex geometry and/or moving boundaries. 

However, it's essential to consider that the self-adaptation of particle positions to the lo-
cal flow map comes at the expense of particle distribution regularity. Distances between par-
ticles can vary over time, and particles may cluster near discontinuities while excessively 
spreading apart near non-smooth fronts. This can lead not only to poor resolution of the 
computed solution but also to extremely low method efficiency. The latter is related to the 
fact that the time step of the ODE solver used to evolve the particle system in time generally 
depends on the distance between particles. Therefore, the success of various particle methods 
relies not only on the accuracy of reconstruction procedures, allowing the recovery of 
pointwise values of the numerical solution from its particle distribution but also on precise 
and efficient redistribution algorithms providing adequate resolution in different regions of 
the computational domain. 

The study of applying the discontinuous particle method to viscous problems was con-
ducted as part of a comprehensive research effort comparing the relative accuracy of numeri-
cal methods on benchmark solutions. This research was previously carried out for inviscid gas 
dynamics problems with benchmark solutions presented in [6–8]. Currently, research is on-
going to comparatively assess the accuracy of numerical methods for viscous problems using 
benchmark solutions. Particularly interesting is the application of the discontinuous particle 
method, given its fundamentally different nature compared to common numerical methods. 

2. Basic equations of the discontinuous particle method 
Let there be 𝑁 material points, located at the starting moment in coordinates 𝑥𝑖

0 and mov-
ing with the speed 𝑣𝑖(𝑥,𝑡) (𝑖 = 1, … , 𝑁). Such verbal formulation corresponds to the initial 
value problem (Cauchy problem). 

{

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑣(𝑥𝑖(𝑡), 𝑡),

𝑥𝑖(0) = 𝑥𝑖
0,  𝑖 = 1, … , 𝑁.

 (1) 

In articles [9, 10], the transition from equation (1) to the transport equation in a differen-
tial form is shown: 

{
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑣(𝑥, 𝑡)𝑢(𝑥,𝑡)

𝜕𝑥
= 0,

𝑢(𝑥, 0) = 𝑢0(𝑥).

 (2) 

As to say, if the coordinates of points change according to the system of equations (1), 
then the density 𝑢(𝑥, 𝑡)  is a generalized solution to the Cauchy problem for the transport 

equation (2).  
Let's describe a modification of the discontinuous method with a different density correc-

tion approach. The particles chosen for correction will be called interacting, and the correc-
tion process will be called interaction. Introduce a uniform time grid with a step. Consider the 
system as a set of 𝑁 macroparticles. To describe the particles, we introduce the following no-

tations: 𝑥𝑖
𝑘 — the coordinate of the center of the i-th particle at the k-th moment in time, 𝑣𝑖

𝑘 — 

the velocity of the particle, 𝐻𝑖
𝑘 — the height (density) of the particle.  

Also, each particle has a time-invariant mass, indicating the conservativeness of the 
method. The new algorithm is based on the conservation of mass between particles. The mass 
between particle coordinates is equal to half the sum of the masses of the particles and, in the 
absence of diffusion, should also remain constant. Let 𝑆𝑖 denote the mass between the (i-1)-th 
particle and the i particle. We calculate the mass 𝑆𝑖 as the area of trapezoids (Figure 1): 

𝑆𝑖 =
𝐻𝑖 + 𝐻𝑖−1

2
(𝑥𝑖 − 𝑥𝑖−1).  



 

 
Figure 1  – Particles forming a trapezoid 

 
With the absence of mass diffusion, the mass between particles remains constant over 

time. We'll record the values of 𝑆𝑖
0 at the initial time moment 𝑡 = 0. Let's proceed with the ini-

tialization procedure of particle parameters at the initial time. Let’s suppose we have an ini-
tial density 𝑢0(𝑥). The coordinates of particles 𝑥𝑖

0 can be uniformly distributed over the com-
putational domain, where 𝑖 = 1, … , 𝑁. 

𝐻𝑖
0 = 𝑢0(𝑥𝑖

0),  𝑖 = 1, … , 𝑁; 

𝑆𝑖
0 =

1

2
(𝐻𝑖−1

0 +𝐻𝑖
0)(𝑥𝑖

0 − 𝑥𝑖−1
0 ),   𝑖 = 2, … , 𝑁. 

 

Coordinates of particles when solving the Hopf equation must be correct for the system of 
equations [11]: 

{

𝑑𝑥𝑖(𝑡)

𝑑𝑡
=
1

2
𝐻𝑖 ,   𝑖 = 1, … , 𝑁;

𝑥𝑖(0) = 𝑥𝑖
0.

  

Let's not forget that the particle method algorithm is constructed as a predictor-corrector. 
First, we solve the system of ordinary differential equations using the explicit Euler method: 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 +
1

2
𝜏𝐻𝑖

𝑘 .  

After the particle shift, the distance between them changes, leading to changes in the 
trapezoid areas. Therefore, at the correction stage, it is necessary to adjust the heights of the 
particles so that the mass between the particles remains constant. Let's consider possible cas-
es of particle interactions (Figure 2). 

 

 
Figure 2 – Examples of particle interactions 

 



A particle with a higher density collides with a particle with a lower density, resulting in a 
reduction of the trapezoid area between the particles. In this case, to maintain the trapezoid 
area, we will increase the height of the particle with lower density. 

A particle with higher density moves away from a particle with lower density, leading to 
an increase in the trapezoid area between the particles. In this case, to maintain the trapezoid 
area, we will decrease the height of the particle with higher density. 

By applying these rules for particle rearrangement and selection criteria, the interaction 
result with one of the neighbors may change the trapezoid area with another neighbor, for 
which correction has already been made, indicating the algorithmic error. Interactions be-
tween particles arising in this way are not considered. 

The corrector adjusts the height of the i-th (𝑖 = 2, … , 𝑁)) particle in such a way that the 

trapezoid area between the particles remains constant: 
1

2
(𝐻𝑖

𝑘+1 +𝐻𝑖−1
𝑘 )(𝑥𝑖

𝑘+1 − 𝑥𝑖−1
𝑘+1) = 𝑆𝑖

0. (3) 

Consequently, the height of the i particle on the new moment of time (𝑘 + 1) is calculated 

this way: 

𝐻𝑖
𝑘+1 =

2𝑆𝑖
0

𝑥𝑖
𝑘+1 − 𝑥𝑖−1

𝑘+1
− 𝐻𝑖−1

𝑘 .  

3. Diffusion for the one-dimensional particle method 
Let’s analyze Burgers’ equation: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ 𝑢(𝑥,𝑡)

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
= 𝜇

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
,  

where 𝜇 — diffusion coefficient. This equation describes quasi-linear advection with diffusion. 

In the initial stage, we solve the advection equation without considering diffusion: 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 +
1

2
𝜏𝐻𝑖

𝑘 ,  𝑖 = 1, … , 𝑁. 

𝐻𝑖
𝑘 =

2𝑆𝑖
0

𝑥𝑖
𝑘+1 − 𝑥𝑖−1

𝑘+1
− 𝐻𝑖−1

𝑘 . 
 

where 𝑆𝑖
𝑘 — mass, located between the (i-1)-th and i particles on the 𝑘 temporal layer, 𝐻𝑖

𝑘 is 

the intermediate value of the particle height. The particle coordinates form a non-uniform 
grid. Let's introduce the following notations:  

ℎ𝑖 = 𝑥𝑖
𝑘+1 − 𝑥𝑖

𝑘 ,  

ℎ̃𝑖 =
ℎ𝑖+1 + ℎ𝑖

2
, 

 

Let's write out the finite difference approximation of the second derivative on a non-
uniform grid and obtain the value of 𝐻𝑖

𝑘+1 on the new temporal layer:  

𝐻𝑖
𝑘+1 = 𝐻𝑖

𝑘 + 𝜏
𝜇

ℎ̃𝑖
(
𝐻𝑖+1
𝑘 − 𝐻𝑖

𝑘

ℎ𝑖+1
−
𝐻𝑖
𝑘 −𝐻𝑖−1

𝑘

ℎ𝑖
). (4) 

Also, due to diffusion, the mass between particles will change, so it's necessary to find the 
new trapezoid areas. Let's consider the i trapezoid between the (i-1)-th and i-th particles. 
We'll calculate the flux density at the trapezoid boundaries according to Fick's law: 

𝑗 = −𝜇
𝜕𝑢

𝜕𝑥
.  

The flux density at the right boundary of the i-th trapezoid is determined by the expres-
sion: 

𝑗2 = −𝜇
𝐻𝑖+1
𝑘 −𝐻𝑖−1

𝑘

𝑥𝑖+1
𝑘 − 𝑥𝑖−1

𝑘
.  

In the same way, for the flux density at the left boundary of the i trapezoid, what we have 
is: 



𝑗1 = −𝜇
𝐻𝑖
𝑘− 𝐻𝑖−2

𝑘

𝑥𝑖
𝑘− 𝑥𝑖−2

𝑘
.  

The mass that has flowed from the 𝜏  of the  (i+1) trapezoid to the i is equal to −𝜏𝑗2  over 
the time step. The mass that has flowed from the  (i-1) to the i is equal to 𝜏𝑗1. The new mass of 

the trapezoid is now: 

𝑆𝑖
𝑘+1 = 𝑆𝑖

𝑘 − 𝜏(𝑗2 − 𝑗1) = 𝑆𝑖
𝑘 + 𝜏𝜇 (

𝐻𝑖+1
𝑘 −𝐻𝑖−1

𝑘

𝑥𝑖+1
𝑘 −𝑥𝑖−1

𝑘
−
𝐻𝑖
𝑘− 𝐻𝑖−2

𝑘

𝑥𝑖
𝑘− 𝑥𝑖−2

𝑘
). (5) 

Among Burgers’ equation solutions, there is a smoothed wave: 

𝑢(𝑥, 𝑡) =
𝑎 + 𝑏exp(𝜆(𝑥 − 𝑥0 −𝐷𝑡))

1 + exp(𝜆(𝑥 − 𝑥0 − 𝐷𝑡))
,  

where 𝐷 =
1

2
(𝑎 + 𝑏), 𝜆 =

1

2
(𝑎 − 𝑏)/𝜇. Let it be so that 𝑎 = 1, 𝑏 = 0.2, 𝑥0 = 5,  𝜇 = 0.15. Let’s 

take 𝑢0 = 𝑢(𝑥,0) as the initial condition The comparison between the numerical and analyti-
cal solutions is depicted in Figure 3. The animation starts at time 𝑇 = 0 and ends at 𝑇 = 10.0. 

 

 
Figure 3 – Applying particle method to Burgers’ equation 

 
The black dots are the centers of the particles, the red line is the exact solution. For better 

visual perception of the particle density, vertical lines are drawn from the particle centers. It 
can be seen that the particle method allows solving such problems with a given accuracy. It is 
also worth noting the densification of the particles, due to which the time step is reduced. In 
problems with strong gradient densification helps to better calculate regions with strong gra-
dient, however, in the Burgers’ equation such a high density of particles reduces the space 
step too much. Thus, the authors see the necessity of using the "birth-death" of particles 
scheme previously applied in [11]. 



4. Increasing the particle method accuracy with the prob-
lem for two-dimensional linear transport equation as an ex-
ample 

Let us consider the following microscopic Cauchy problem for a 2D case: 

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑥𝑖

𝑢(𝑡)

𝑑𝑡
= 𝑢(𝑥𝑖

𝑢(𝑡), 𝑦𝑖
𝑢(𝑡), 𝑡), 𝑖 = 1,… , 𝑁𝑢;

𝑑𝑦𝑖
𝑢(𝑡)

𝑑𝑡
= 𝑣(𝑥𝑖

𝑢(𝑡), 𝑦𝑖
𝑢(𝑡), 𝑡), 𝑖 = 1,… , 𝑁𝑢;

𝑑𝑥𝑖
𝑣(𝑡)

𝑑𝑡
= 𝑢(𝑥𝑖

𝑣(𝑡), 𝑦𝑖
𝑣(𝑡), 𝑡), 𝑖 = 1, … , 𝑁𝑣;

𝑑𝑥𝑖
𝑣(𝑡)

𝑑𝑡
= 𝑣(𝑥𝑖

𝑣(𝑡), 𝑦𝑖
𝑣(𝑡), 𝑡), 𝑖 = 1,… , 𝑁𝑣;

𝑥𝑖
𝑢(0) = 𝑥𝑖

𝑢0,  𝑦𝑖
𝑢(0) = 𝑦𝑖

𝑢0 , 𝑖 = 1, … , 𝑁𝑢;

𝑥𝑖
𝑣(0) = 𝑥𝑖

𝑣0,  𝑦𝑖
𝑣(0) = 𝑦𝑖

𝑣0 , 𝑖 = 1, … , 𝑁𝑣.

  

which solves the inviscid Burgers’ equation in a weak sense. 

{
 
 

 
 
𝜕𝑢(𝑥,𝑦, 𝑡)

𝜕𝑡
+
𝜕𝑢(𝑥, 𝑦, 𝑡)𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥
+
𝜕𝑣(𝑥, 𝑦, 𝑡)𝑢(𝑥,𝑦, 𝑡)

𝜕𝑦
= 0

𝜕𝑣(𝑥,𝑦, 𝑡)

𝜕𝑡
+
𝜕𝑢(𝑥, 𝑦, 𝑡)𝑣(𝑥,𝑦,𝑡)

𝜕𝑥
+
𝜕𝑣(𝑥, 𝑦, 𝑡)𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑦
= 0

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑡), 𝑣(𝑥,𝑦,0) = 𝑣0(𝑥,𝑡).

  

We have introduced two sets of particles with the coordinates (𝑥𝑖
𝑢(𝑡),𝑦𝑖

𝑢(𝑡)), 𝑖 = 1, … ,𝑁𝑢 
and (𝑥𝑖

𝑣(𝑡),𝑦𝑖
𝑣(𝑡)), 𝑖 = 1, … , 𝑁𝑣 for the functions 𝑢(𝑥,𝑦,𝑡) and 𝑣(𝑥, 𝑦, 𝑡), respectively. 

The coordinates of the particles 𝑥𝑖
𝑢, 𝑦𝑖

𝑢 and 𝑥𝑖
𝑣, 𝑦𝑖

𝑣 will match each other if the same num-
ber of particles is selected for representing of u and v: 𝑁𝑢 = 𝑁𝑣. Thus, we will solve the sys-

tem: 

{
 
 

 
 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑢(𝑥𝑖(𝑡),𝑦𝑖(𝑡), 𝑡), 𝑖 = 1, … , 𝑁;

𝑑𝑦𝑖(𝑡)

𝑑𝑡
= 𝑣(𝑥𝑖(𝑡),𝑦𝑖(𝑡), 𝑡), 𝑖 = 1, … , 𝑁;

𝑥𝑖(0) = 𝑥𝑖
0,   𝑦𝑖(0) = 𝑦𝑖

0, 𝑖 = 1,… , 𝑁.

  

In the two-dimensional case, for selecting an interacting neighbor one needs to use the 
aiming parameter, which is equal to the cosine of the angle between the velocity vector of the 
particle and the vector connecting the centers of the particles. 

For example, 𝑥𝑎, 𝑦𝑎 are the coordinates of the first interacting particle, 𝑥𝑏, 𝑦𝑏 are the co-
ordinates of the second particle, 𝑣𝑥, 𝑣𝑦 are the coordinates of the first particle’s velocity vec-

tor. If we use the definition of an inner product, then: 

cos(𝜃) =
(𝑥𝑎 −𝑥𝑏)𝑣𝑥+ (𝑦𝑎− 𝑦𝑏)𝑣𝑦

√(𝑥𝑎− 𝑥𝑏)
2 + (𝑥𝑎 − 𝑥𝑏)

2√𝑣𝑥
2+ 𝑣𝑦

2
  

Let’s analyze the test problem for the two-dimensional linear advection equation [12]: 
𝜕𝜓(𝑥, 𝑦, 𝑡)

𝜕𝑡
=
𝜕𝑢(𝑥,𝑦)𝜓(𝑥,𝑦, 𝑡)

𝜕𝑥
+
𝜕𝑣(𝑥,𝑦)𝜓(𝑥,𝑦, 𝑡)

𝜕𝑥
= 0, 

𝜓(𝑥, 𝑦, 0) = 𝜓0(𝑥, 𝑦). 
 

where 𝑢(𝑥,𝑦) = −(𝑦− 𝑦0)/25, 𝑣(𝑥, 𝑦) = −(𝑥 − 𝑥0)/25. With such a velocity problem, the ini-
tial profile 𝜓0  should rotate around the point (𝑥0,𝑦0) without changing its shape. Let's com-

pare two numerical solutions obtained by the particle method we described, in the predictor 
stage, we use the first-order Euler approximation and the modified second-order Euler meth-
od. 

Let’s use the modified second-order Euler method. First, take a time step of 1
2
𝜏. 



𝑥𝑖
𝑘+1/2

= 𝑥𝑖
𝑘 +

1

2
𝜏𝑢(𝑥𝑖

𝑘 ,𝑦𝑖
𝑘), 

𝑦𝑖
𝑘+1/2 = 𝑦𝑖

𝑘 +
1

2
𝜏𝑣(𝑥𝑖

𝑘 , 𝑦𝑖
𝑘). 

 

In the second step, we obtain the coordinates of the particle center 𝑥𝑖
𝑘+1,  𝑦𝑖

𝑘+1 at the new 

time step using the values 𝑥𝑖
𝑘+1/2

, 𝑦𝑖
𝑘+1/2

: 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘+ 𝜏𝑢(𝑥𝑖
𝑘+1/2, 𝑦𝑖

𝑘+1/2), 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 + 𝜏𝑣(𝑥𝑖
𝑘+1/2, 𝑦𝑖

𝑘+1/2). 
 

Let's take the initial function 𝜓0(𝑥, 𝑦) in the form of a right circular cone with a radius of 

5 and a height of 1, whose center is located at the point with coordinates (25, 10): 
𝜓0(𝑥, 𝑦) = 

= { −
(𝑥 − 25)2

25
−
(𝑦− 10)2

25
+ 1, (𝑥 − 25)2 + (𝑦− 10)2 ≤ 25;

0,                                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
 

Figure 4 shows the initial condition. Figures 5 and 6 show solutions by two methods after 
three circles. On the left is a three-dimensional image, and on the right is a top-down view, 
more suitable for visual analytics. It is evident that the solution obtained with the modified 
method better preserves the shape of the initial profile. 

 

 
Figure 4 – Initial conditions 

 

 
Figure 5 – Numerical solution with particle method using Euler method 

 



 
Figure 6 – Numerical solution with particle method using modified Euler method 

5. Particle method for viscous gas 
The equations of gas dynamics express the general laws of mass, momentum, and energy. 

Following [13, 14], let's write the system of equations for the two-dimensional case in Euleri-
an variables: 
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𝜕𝜌

𝜕𝑡
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𝜕𝑢𝜌

𝜕𝑥
+
𝜕𝑣𝜌

𝜕𝑦
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𝜕𝜌𝑢

𝜕𝑡
+
𝜕(𝑢𝜌𝑢)

𝜕𝑥
+
𝜕(𝑣𝜌𝑢)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 2𝜇

𝜕2𝑢

𝜕𝑥2
+𝜇

𝜕2𝑣

𝜕𝑥𝜕𝑦
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𝜕𝜌𝑣

𝜕𝑡
+
𝜕(𝑢𝜌𝑣)

𝜕𝑥
+
𝜕(𝑣𝜌𝑣)

𝜕𝑦
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𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 2𝜇

𝜕2𝑣

𝜕𝑦2

𝜕𝐸

𝜕𝑡
+
𝜕𝑢𝐸

𝜕𝑥
+
𝜕𝑣𝐸

𝜕𝑦
= −

𝜕𝑝𝑢

𝜕𝑥
−
𝜕𝑝𝑣

𝜕𝑦
+
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+
𝜕(𝑢𝜏𝑦𝑥)

𝜕𝑦
+
𝜕(𝑣𝜏𝑥𝑦)

𝜕𝑥
++

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦

𝑝 = (𝛾 − 1)(𝐸 −
𝜌

2
(𝑢2 + 𝑣2))

  

Ideal gas, 𝛾 = 1.4. 𝜌, 𝑢, 𝑣,  𝑝, 𝐸, 𝜏  — density, 𝑥 and 𝑦 components of velocity, pressure, to-

tal energy, and stress tensor. 
The algorithm for solving the two-dimensional problem is similar to the one-dimensional 

case. The computational domain is divided into a finite number of regions serv ing as the ba-
ses of particles. Particle heights are determined from the initial condition – func-
tions𝜌(𝑥, 𝑦, 0), 𝜌𝑢(𝑥, 𝑦, 0), 𝜌𝑣(𝑥, 𝑦, 0), 𝐸(𝑥, 𝑦, 0) computed at the particle base centers (points 
𝑥𝑖(0), 𝑦𝑖(0)). The radius of particle bases of all types is assumed to be the same. 

First of all, just like in the one-dimensional case, we solve systems of ordinary differential 
equations for the coordinates of the four types of particles using the Euler method. In the 
two-dimensional case, a partner for interaction is chosen by minimizing the "aiming" param-
eter—the angle between the relative velocity vector and the vector connecting the centers of 
the particles (algorithmically, maximizing the cosine of this angle). Once we've selected the j-
th particle for interaction, we move on to a one-dimensional problem. Then, using a correc-
tor, we adjust the height of the i particle similarly to (3) to keep the area of the trapezoid be-
tween the particles constant. 

1

2
(𝐻𝑖

𝑘+1 +𝐻𝑗
𝑘)√(𝑥𝑖

𝑘+1 − 𝑥𝑗
𝑘+1)

2
+ (𝑦𝑖

𝑘+1 − 𝑦𝑗
𝑘+1)

2
= 𝑆𝑖𝑗

0 .  

From here, we can find the preliminary height (without considering pressure forces yet): 

𝐻𝑖
𝑘+1 =

2𝑆𝑖𝑗
0

√(𝑥𝑖
𝑘+1 − 𝑥𝑗

𝑘+1)
2
+ (𝑦𝑖

𝑘+1 −𝑦𝑗
𝑘+1)

2

−𝐻𝑗
𝑘 . 

 



The next step in the algorithm involves accounting for pressure forces. The pressure dif-
ference on the left and right sides of a particle leads to changes in its momentum and energy, 
increasing the volume of the respective particles. Similarly to [8], we arrive at the following 
computational formulas: 

𝑉𝜌𝑢𝑖 (𝑡𝑗+1) = 𝑉𝜌𝑢𝑖(𝑡𝑗) + 𝜏 (𝑝1𝑖
−(𝑡𝑗) − 𝑝1𝑖

+(𝑡𝑗)) 

𝑉𝜌𝑣𝑖(𝑡𝑗+1) = 𝑉𝜌𝑣𝑖 (𝑡𝑗)+ 𝜏 (𝑝2𝑖
−(𝑡𝑗) − 𝑝2𝑖

+(𝑡𝑗)) 

𝑉𝐸𝑖 (𝑡𝑗+1) = 𝑉𝐸𝑖 (𝑡𝑗) + 𝜏 (𝑝1𝑖
−(𝑡𝑗)𝑢1𝑖

− (𝑡𝑗) − 𝑝1𝑖
+(𝑡𝑗)𝑢1𝑖

+ (𝑡𝑗)) + 

+𝜏 (𝑝2𝑖
−(𝑡𝑗)𝑣2𝑖

−(𝑡𝑗) − 𝑝2𝑖
+(𝑡𝑗)𝑣2𝑖

+(𝑡𝑗)) 

 

The computed values of density, momentum, and energy from the previous step allow for 
determining the pressure at the particle's center. To achieve this, the equation of state is ap-
plied. 

To determine the pressure and velocity values at the particle boundary, a pressure calcu-
lation scheme based on particle "interaction" is employed to determine the pressure and ve-
locity values at the particle boundary. If an interaction occurred at the part icle boundary dur-
ing the time step (according to the criteria described above for the one-dimensional configu-
ration), then the pressure and velocity at that boundary are set equal to the pressure and ve-
locity of the particle that caused the rearrangement. If no interaction occurs, the pressure at 
the boundary is set equal to the pressure at the particle's center. Consequently, the volumes of 
particles 𝜌𝑢, 𝜌𝑣, and 𝐸 are additionally increased. 

Next, we need to consider the diffusive part. It is needed to take a particle 𝑖 and select all 
neighboring particles 𝑗𝑖 within a certain interaction radius R. For each pair (𝑖, 𝑗𝑖 ), simplify the 
problem to make it one-dimensional and use formulas (4) and (5). It's worth stating that the 
current algorithm requires finding neighbors at each time step, significantly impacting the 
method's performance and eliminating one of the advantages compared to traditional numer-
ical methods where grid nodes are stationary, and neighbors are always known. 

As a test case to develop the capabilities of the particle method, the problem of a com-
pressible gas flow around a plate is considered. The boundary conditions on the plate are 
standard no-slip conditions (u=v=0). A significant difference from the Blasius problem is that 
a singularity forms at the plate's nose. For the boundary condition, special particles with zero 
velocity are used; their height does not change. 

For the laminar boundary layer, the layer thickness 𝛿incom for the incompressible case is 

determined by the relation [15]: 

𝛿incom = 5.0
𝑥

√Re
,  

With this, it is possible to calculate the thickness of the boundary layer for compressible 
gas 𝛿com: 

𝛿com = 𝛿incom (1 + 0.72𝑟
𝛾 − 1

2
𝑀𝑤
2 )

0.85

.  

Figure 7 shows the balanced velocity field. The Mach number 𝑀 = 300, free stream tem-
perature 𝑇∞ = 300, free stream density ρ∞ = 1.17641, thickness for compressible gas 𝛿com =
0.00121572.  

 
Figure 7  – Velocity distribution in the Blasius problem 

 



As a result of the establishment, a qualitative flow pattern has been obtained. However, 
there are visible white spots in the figure, indicating the absence of particles at the spout. This 
result can be explained by the fact that at the nose of the plate the particles experience sharp 
braking and fly up, thereby forming a narrow strip without particles. This can also be elimi-
nated by the mechanism of “birth-death” of particles. 

6. Conclusion 
With the use of the discontinuous particle method without shape consideration two diffu-

sion problems were solved: the one-dimensional problem for Burgers’ equation and Blasius’ 
two-dimensional problem. It was also discovered that the use of a high-precision circuit at the 
corrector stage increases the final accuracy of the particle method. However, in problems with 
viscosity, regions arise with an increased number of particles, which is why the time step has 
to be reduced, and regions in which there are no particles, that is, the numerical result is not 
defined. It is proposed to solve such problems by the mechanism of “birth-death” of particles, 
which will be done in subsequent works. The developed approach ensures the participation of 
the discontinuous particle method in the general comparative analysis of the accuracy of nu-
merical methods on reference solutions for viscous problems. 
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